## Week 3: Kernel Density Estimation MATH-517 Statistical Computation and Visualization

Linda Mhalla

2024-09-27

# Section 1

#### Univariate Density Estimation

# The problem

 $\textbf{Setup:}\ X_1,\ldots,X_n$  is a random sample from a distribution F with continuous density f(x)

**Goal**: Estimate f non-parametrically, i.e., without assuming a particular form The **histogram** 

$$h(x) = \frac{1}{n} \sum_{k=1}^{K} \frac{\#\left\{\left\{X_j\right\}_{j=1}^n \cap \mathcal{I}_k\right\}}{|\mathcal{I}_k|} \mathbbm{1}_{x \in \mathcal{I}_k}$$

is the simplest form of density estimation. It requires a specification of

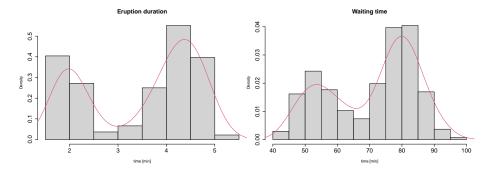
- origin and binwidth, or
- *breaks:* more general, but non-equidistant binning is bad anyway, so think only about origin and bindwidth

Running Ex.: Yellowstone's Old Faithful geyser - faithful data:

- waiting time between eruptions
- eruptions duration of the eruptions

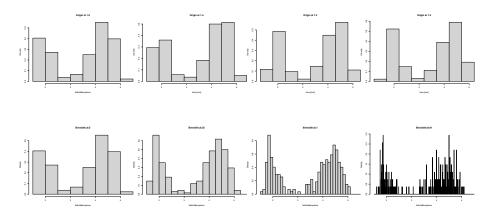
Linda Mhalla

### Basic estimator: Histogram



(equally spaced) breaks specified, so a rule of thumb used to choose origin and binwidth

# Histogram: Change in Origin and Binwidth

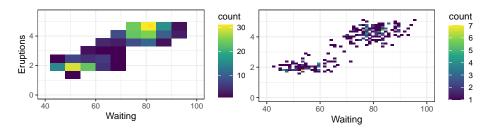


 $\Rightarrow$  density estimate depends on the starting position and width of the bins

### Issues with Histogram

Histogram is great for visualization, but fails as a density estimator

- origin is completely arbitrary
- *binwidth* relates to smoothness of *f*, but histogram cannot be smooth. The discontinuities of the estimate are not due to the underlying density but to bins' locations and widths
- *curse of dimensionality*: number of bins grows exponentially with the number of dimensions

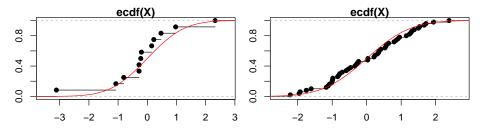


Let us now address these issues by a naive version of kernel density estimation

### ECDF

Let  $\widehat{F}$  denote the empirical (cumulative) distribution function (ECDF) of the data  $\{X_i\}_{i=1}^n$ , i.e.,

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{[X_i \leq x]}$$



7/30

#### Naive Density Estimator

- $\bullet\,$  The ECDF  $\widehat{F}_n(x)$  is an estimator of F
  - by Glivenko-Cantelli theorem uniformly almost surely consistent:

$${\rm sup}_x |\widehat{F}(x) - F(x)| \stackrel{a.s.}{\to} 0$$

Note that f is the derivative F. However, plugging \$\hat{F}\_n(x)\$ results in a sum of point masses at the observations as \$\hat{F}\_n\$ is discrete
But.

$$f(x) = \lim_{h \to 0_+} \frac{F(x+h) - F(x-h)}{2h}$$

and we can fix  $\boldsymbol{h}=\boldsymbol{h}_n$  small and depending on  $\boldsymbol{n},$  and plug it in:

$$\hat{f}(x) = \hat{f}_n(x) = \frac{\widehat{F}_n(x+h_n) - \widehat{F}_n(x-h_n)}{2h_n} = \frac{1}{2h_n} \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\left[X_i \in (x-h_n, x+h_n]\right]} = \frac{1}{2h_n} \sum_{i=1}^n \sum_{i=1}^n \mathbb{1}_{\left[X_i \in (x-h_n, x+h_n]\right]} = \frac{1}{2h_n} \sum_{i=1}^n \sum_{i=1}^n \mathbb{1}_{\left[X_i \in (x-h_n, x+h_n]\right]} = \frac{1}{2h_n} \sum_{i=1}^n \sum_{i=1}^n \mathbb{1}_{\left[X_i \in (x-h_n]\right]} = \frac{1}{2h_n} \sum_{i=1}^n \sum_{i=1}^n \sum_{i=1}^n \sum_{i=1}^n \sum_{i=1}^n \sum_{i=1}^n$$

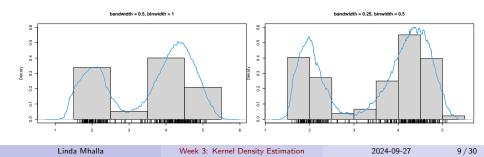
 $\Rightarrow$  This is called the naive density estimator

Linda Mhalla

Week 3: Kernel Density Estimation

# Naive Density Estimator

- $\bullet\,$  The naive DE  $\hat{f}$  is a step function with jumps at the points  $X_i\pm h,$  and thus discontinuous
- f is the sum of boxcar functions centered at the observations with width 2h and area  $1/n \Rightarrow$  this is equivalent to the notion of moving histogram with binwidth=2h
  - aggregate data in intervals of the form (x h, x + h) and approximate the density at x by the relative frequency in (x h, x + h)
  - origin does not matter anymore



#### Consistency

Theorem If  $h=h_n\to 0$  and  $nh_n\to\infty$  as  $n\to\infty,$  then, for any continuity point t,

$$\hat{f}_n(t) \stackrel{p}{\to} f(t),$$

as  $n \to \infty.$  Thus,  $\hat{f}_n$  is a (weakly) consistent estimator

For instance, since

$$\hat{f}(x) = \frac{1}{2nh_n} \sum_{i=1}^n \underbrace{\overset{Ber\bigl(F(x+h_n)-F(x-h_n)\bigr)}{\mathbbm{1}_{\bigl[X_i \in (x-h_n,x+h_n]\bigr]}}}$$

$$\begin{array}{l} \bullet \ \ \mathbb{E}\widehat{f}(x) = \frac{F(x+h_n) - F(x-h_n)}{2h_n} \to f(x) \quad \text{as} \quad h_n \to 0_+ \text{, when } n \to \infty \\ \bullet \ \ \mathrm{var}\{\widehat{f}(x)\} = \frac{1}{4nh_n^2} \big\{ F(x+h_n) - F(x-h_n) \big\} \big\{ 1 - F(x+h_n) + F(x-h_n) \big\} \end{array}$$

$$= \tfrac{F(x+h_n)-F(x-h_n)}{2h_n} \tfrac{1-F(x+h_n)+F(x-h_n)}{2nh_n} \to 0$$

as  $h_n \to 0$  and  $nh_n \to \infty,$  when  $n \to \infty$ 

Linda Mhalla

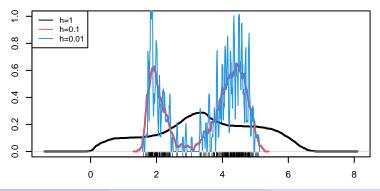
Week 3: Kernel Density Estimation

10/30

# Smoothness of the Naive DE

Smoothness of  $\widehat{f}$  depends on the bandwidth h, often called the smoothing parameter

- the bandwidth h is a *tuning parameter* and needs to be chosen somehow in practice
  - $\bullet \ h \ {\rm small} \to {\rm wiggly} \ {\rm estimator}$
  - $h \mid \mathsf{arge} \to \mathsf{smooth} \; \mathsf{estimator}$



#### Naive DE Rewritten

The naive DE can be written as

$$\begin{split} \hat{f}(x) &= \frac{1}{2nh_n} \sum_{i=1}^n \mathbb{1}_{\left[X_i \in (x-h_n, x+h_n]\right]} = \frac{1}{2nh_n} \sum_{i=1}^n \mathbb{1}_{\left[-1 < \frac{X_i - x}{h_n} \le 1\right]} \\ &= \frac{1}{n} \sum_{i=1}^n \frac{1}{h_n} K\left(\frac{x - X_i}{h_n}\right) \end{split}$$

where  $K(t) = \frac{1}{2}\mathbbm{1}_{\{-1 < t \leq 1\}}$  is the density of U[-1,1].

• Since 
$$\int_{-\infty}^{+\infty} K(t)dt = 1$$
, we have that
$$\int_{-\infty}^{+\infty} \hat{f}(x)dx = \frac{1}{n}\sum_{i=1}^{n}\frac{1}{h_n}\int_{-\infty}^{+\infty} K\left(\frac{x-X_i}{h_n}\right)dx = 1$$

• Since  $K(x) \ge 0$ , then  $\hat{f}(x) \ge 0$  for all x.

 $\Rightarrow \hat{f}(x)$  is a probability density function

Next step: replace  $K(\boldsymbol{x})$  by another probability density, maybe one giving more weight to points closer to  $\boldsymbol{x}$  ?

Linda Mhalla

Week 3: Kernel Density Estimation

2024-09-27 12 / 30

# **KDE** - Definition and Properties

Definition. KDE of f based on  $X_1,\ldots,X_N$  is

$$\hat{f}(x) = \frac{1}{nh_n}\sum_{i=1}^n K\left(\frac{X_i-x}{h_n}\right),$$

where the kernel  $K(\cdot)$  satisfies:



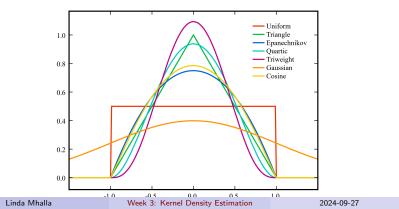
- $K(\cdot)$  is usually taken to be a density, and the assumptions
  - 1-3 hold if it is symmetric
  - 4 holds if it has a finite absolute moment
  - 5 holds if it is uniformly bounded

 $\bullet~$  if  $h_n \to 0~{\rm and}~nh_n \to \infty$  (as  $n \to \infty), we have pointwise consistency$ 

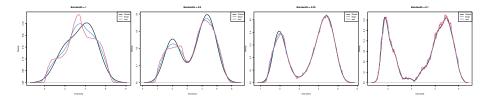
- we will show this in a bit
- also uniform consistency, but tricky to show

# Common Kernels

| Kernel Name                                            | Formula                                                                                                                                                          |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Epanechnikov<br>Tricube (a.k.a. Triweight)<br>Gaussian | $\begin{array}{l} K(x) \propto (1-x^2) \mathbb{1}_{[ x  \leq 1]} \\ K(x) \propto (1- x ^3)^3 \mathbb{1}_{[ x  \leq 1]} \\ K(x) \propto \exp(-x^2/2) \end{array}$ |
|                                                        |                                                                                                                                                                  |



- While there is improvement when using non-rectangular kernels, the choice of the bandwidth is more important than that of the kernel
- A good choice is one that makes the estimate asymptotically converge quite rapidly in some well-chosen norm



#### Bias-Variance Trade-off

Goal: choose the tuning parameter h so that the mean squared error of the estimator is minimized:

$$\begin{split} \underbrace{\mathbb{E}[\{\hat{f}(x) - f(x)\}^2]}_{MSE\{\hat{f}(x)\}} &= \mathbb{E}[\{\hat{f}(x) \pm \mathbb{E}\hat{f}(x) - f(x)\}^2] \\ &= \underbrace{\{\mathbb{E}\hat{f}(x) - f(x)\}^2}_{bias^2} + \underbrace{\operatorname{var}\{\hat{f}(x)\}}_{variance} \end{split}$$

Blackboard calculations (available in the lecture notes) give

$$\begin{aligned} \text{bias}\{\hat{f}(x)\} &= \frac{1}{2}h_n^2 f''(x) \int z^2 K(z) dz + o(h_n^2) \\ \text{var}\{\hat{f}(x)\} &= \frac{1}{nh_n} f(x) \int \{K(z)\}^2 dz + o\left(\frac{1}{nh_n}\right) \end{aligned}$$

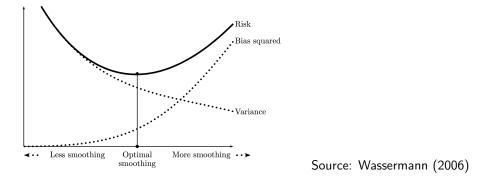
This shows consistency for  $h_n \to 0$  and  $nh_n \to \infty$  and the trade-off:

- small  $h \Rightarrow$  small bias but large variance
- large  $h \Rightarrow$  large bias but small variance

#### Bias-Variance Trade-off

The bias-variance trade-off is common when it comes to smoothing:

- In KDE, the smoothing is determined by the bandwidth
- Smoother estimates result in smaller variance but higher bias



# Optimal Bandwidth

Plugging this back in the MSE formula ignoring the *little-o* terms, differentiating the MSE w.r.t. h and setting it to zero leads to asymptotically optimal bandwidth choice:

$$h_{opt}(x) = n^{-1/5} \left( \frac{f(x) \int K(z)^2 dz}{\left[ f''(x) \right]^2 \left[ \int z^2 K(z) dz \right]^2} \right)^{1/5}$$

- $h_{opt}(x) \asymp n^{-1/5}$   $(h_{opt}(x) \text{ is of the order } n^{-1/5})$  and with this choice  $MSE \asymp variance = O(n^{-4/5})$ 
  - optimal non-parametric convergence rate
  - slower than the MSE of a MLE ( $\mathcal{O}(n^{-1}))$ : price to pay for non-parametric approach
- $h_{opt}(x)$  is a local choice depends on x. A global choice can be obtained by minimizing the MISE (to follow)

The optimal bandwidth results in

$$MSE_{h_{opt}} = c(n,f) \left[ \underbrace{\int x^2 K(z) dz \bigg\{ \int K^2(z) dz \bigg\}^2}_A \right]^{2/5},$$

where c(n,f) is constant and depends only on n and f.

 $\Rightarrow$  The optimal kernel is the one minimizing the term A. It can easily be shown to be the Epanechnikov kernel! A common measure of performance of the estimator over all x is the Mean Integrated Squared Error (MISE):

$$\begin{split} MISE(\hat{f}) &= \mathbb{E} \int \{\hat{f}(x) - f(x)\}^2 dx \\ &= \int \mathbb{E}\{\hat{f}(x) - f(x)\}^2 dx = \int MSE\{\hat{f}(x)\} dx \end{split}$$

Minimizing the MISE yields the optimal bandwidth

$$\tilde{h}_{opt} = n^{-1/5} \bigg( \frac{\int K^2(z) dz}{\int \{f''(x)\}^2 dx \big[ \int z^2 K(z) dz \big]^2} \bigg)^{1/5}$$

The resulting MISE is also of order  $n^{-4/5}$ 

# The Chicken and Egg problem

The theoretically optimal bandwidth  $\tilde{h}_{opt} = n^{-1/5} (C(k) / \int \{f''(x)\}^2 dx)^{1/5}$  cannot be directly used as it depends on the unknown f. There are different approaches for the practical choice of h.

- Reference method: choose a parametric family for this formula
  - assume that f is the density of a  $\mathcal{N}(\mu,\sigma^2)$  and then plug in its curvature  $\frac{3}{8\sqrt{\pi}\sigma^5}$  into the formula of  $\tilde{h}_{opt}.$  This yields

$$\tilde{h}_{opt} = n^{-1/5} \sigma C(k)^{1/5} (8\sqrt{\pi}/3)^{1/5}$$

which when combined with a normal kernel gives the famous rule of thumb  $\hat{h}_{opt}=(4/3)^{1/5}n^{-1/5}\hat{\sigma}$ 

- **Two-step method**: *f* in the formula is estimated non-parametrically by a pilot fit
  - estimate f'' by kernel estimate with pilot bandwidth
  - plug this estimate into  $\tilde{h}_{opt}$  to estimate the optimal bandwidth in the kernel estimation of f

# Section 2

#### Multivariate Density Estimation

In practice, data are often multivariate

Consider n i.i.d. realizations of a d-dimensional random vector  $\mathbf{X}_i=(X_{i,1},\ldots,X_{i,d})^\top$  from unknown F. We wish to estimate f, the density of F

The multivariate kernel density estimator is defined as

$$\hat{f}_n(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\bigg(\frac{\mathbf{x} - \mathbf{X}_i}{h}\bigg),$$

where the kernel  $K(\cdot)$  is a d-dimensional density

### Multivariate Kernel

In practice,  $\boldsymbol{K}$  is often chosen as

- $\bullet$  the product of univariate kernels:  $K(\mathbf{x}) = \prod_{i=1}^d K_0(x_i)$
- ellipsoidal kernel
  - multivariate normal density:  $(2\pi)^{-d/2}\exp(-\mathbf{x}\mathbf{x}^\top/2)$

 $\Rightarrow$  the matrix of bandwidths plays the role of the covariance-variance matrix

• multivariate Epanechnikov:  $\frac{d+2}{2c_d}(1 - \mathbf{x}\mathbf{x}^\top)\mathbb{1}_{[-1,1]}(\mathbf{x}\mathbf{x}^\top)$ , with  $c_d$  the volume of a d-dimensional unit ball ( $c_1 = 1, c_2 = \pi, c_3 = 4\pi/3$ )

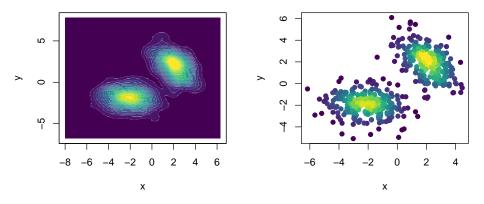
Degrees of smoothing are controlled by h and can be set different along the directions, i.e., under a product kernel, the KDE is

$$\hat{f}_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h_1} K_0 \left( \frac{x_1 - X_{i,1}}{h_1} \right) \times \dots \times \frac{1}{h_d} K_0 \left( \frac{x_d - X_{i,d}}{h_d} \right)$$

 $\Rightarrow$  if margins are standardized (on the same scale), set  $h=h_1=\ldots=h_d$ 

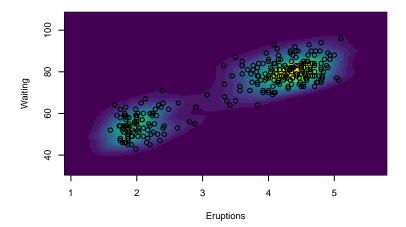
### Multivariate KDE

• Mixture of bivariate normal



#### Multivariate KDE

• Faithful dataset



2024-09-27

# Curse of dimensionality

- KD estimation is typically restricted to d=2
- Unless sample size is very large, neighbourhoods will be sparsely populated with data points (in higher dimensions)

For instance,

• If you have n data points uniformly distributed on the interval [0,1], how many data points are there in the interval [0,0.1]?

Around n/10

• If you have n data points uniformly distributed on the 10-dimensional unit cube  $[0,1]^{10}$ , how many are there in the cube  $[0,0.1]^{10}$ ?

Around  $0.1^{10}n$ 

 $\Rightarrow$  estimation gets harder very quickly as dimension increases

# Curse of dimensionality

Under some smoothing conditions on f, the best possible MSE rate (the one obtained with optimal choice of bandwidth) is  $O(n^{-4/(d+4)})$ . That is,  $MSE_{h_{opt}}\approx cn^{-4/(d+4)}$  and  $n\approx (c/MSE_{h_{opt}})^{d/4}$ 

 $\Rightarrow$  sample size grows exponentially with dimension

| $n^{-4/(d+4)}$ | d = 1               | d = 2                | d = 5               |
|----------------|---------------------|----------------------|---------------------|
| n = 100        | 0.025               | 0.046                | 0.129               |
| n = 1000       | 0.004               | 0.010                | 0.046               |
| n = 10000      | $6.3 	imes 10^{-4}$ | $2.1 \times 10^{-3}$ | $1.6 	imes 10^{-2}$ |

Thus, for d = 5, the rate with n = 10000 is the same than for d = 2 with 10 times less data ...

# Summary - Overall

Motivation:

- On Week 2, we introduced the histogram as a data exploratory tool and noticed its limitations
- e Histogram is a poor estimator of density, because it
  - is never smooth and requires a choice of origin
- Today, we introduced naive KDE by generalizing histogram to its origin-free version
- Then, we generalized naive KDE by allowing for better kernels
- Ow we have a decent nonparametric density estimation tool: KDE
  - in exploratory analysis, histograms often overlaid with KDEs

#### Main takeaways:

- Symptotic properties analyzed using Taylor expansions
  - suggest a way to choose *bandwidth*
  - the bias-variance trade-off made explicit
- Multivariate extension works well in low dimensions

Go to Assignment 2 for details.

Go to Exercise 2 for details.