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Section 1




The problem

Setup: X;,..., X, is a random sample from a distribution F' with continuous
density f(x)

Goal: Estimate f non-parametrically, i.e., without assuming a particular form

The histogram

[T taety,
is the simplest form of density estimation. It requires a specification of

@ origin and binwidth, or
@ breaks: more general, but non-equidistant binning is bad anyway, so think
only about origin and bindwidth
Running Ex.: Yellowstone's Old Faithful geyser - faithful data:

@ waiting - time between eruptions
@ eruptions - duration of the eruptions
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Basic estimator: Histogram
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(equally spaced) breaks specified, so a rule of thumb used to choose origin and binwidth
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Histogram: Change in Origin and Binwidth

= density estimate depends on the starting position and width of the bins
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Issues with Histogram
Histogram is great for visualization, but fails as a density estimator

@ origin is completely arbitrary

@ binwidth relates to smoothness of 7, but histogram cannot be smooth. The
discontinuities of the estimate are not due to the underlying density but to
bins' locations and widths

@ curse of dimensionality: number of bins grows exponentially with the
number of dimensions
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Let us now address these issues by a naive version of kernel density estimation
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ECDF

Let F' denote the empirical (cumulative) distribution function (ECDF) of
the data { X} ,, i.e.,

oy 1 &
Fo(z) = n Z 1ix, <al
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ecdf(X) . ecdf(X)
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Naive Density Estimator

o The ECDF F) () is an estimator of F
o by Glivenko-Cantelli theorem uniformly almost surely consistent:
sup, |F(z) — F(z)] 0
o Note that f is the derivative F'. However, plugging fn(x) results in a
sum of point masses at the observations as F), is discrete
o But,

. Fl@+h)—Fx—h)
fla) = Jim oh

and we can fix h = h,, small and depending on n, and plug it in:

n ) _ﬁn(m—i_hn)_ﬁn(x_hn)_ 11
f(x) - fn<l‘) - 2hn - thg Zlﬂ[Xie(thn,ﬂchhn]]

1=

= This is called the naive density estimator
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https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem

Naive Density Estimator

@ The naive DE f is a step function with jumps at the points X, &+ h,
and thus discontinuous
@ fis the sum of boxcar functions centered at the observations with
width 2h and area 1/n = this is equivalent to the notion of moving
histogram with binwidth=2h
o aggregate data in intervals of the form (z — h,z + h) and approximate
the density at = by the relative frequency in (z — h,z + h)
e origin does not matter anymore

bandwidth = 0.5, binwidth = 1 banduwidth = 0.25, binwidth = 0.5
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Consistency

Theorem If h = h,, = 0 and nh,, — co as n — oo, then, for any continuity
point t,

£ 5 f®),

as n — oo. Thus, f, is a (weakly) consistent estimator

For instance, since

Be'r( F(a+h,)-F(e—h,))

th _ X E(@—h, ath,]|
n oj—1

° [Ef(x):%f@%")%f(x) as h, —0,, when n — oo

_ Flathy)~Fla—h,) 1-Fleth, +Fe—h,) _
- 2h,, 2nh,,

as h,, — 0 and nh,, — 0o, when n — o0
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Smoothness of the Naive DE

Smoothness of f depends on the bandwidth h, often called the smoothing
parameter

@ the bandwidth h is a tuning parameter and needs to be chosen
somehow in practice
e h small — wiggly estimator
e h large — smooth estimator
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Naive DE Rewritten

The naive DE can be written as

f@) =350 ;ﬂ[xiemhn,whn]} " 2nh Zﬂ[kaﬁ';zéll]
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where K(t) = %1{71<t§1} is the density of U[—1, 1].

@ Since fjozo K (t)dt = 1, we have that

[::of(w)dm:iih[;OOK<thi)d:r:1

2=1 n

@ Since K(x) >0, then f(z) > 0 for all .

= f(x) is a probability density function

Next step: replace K (x) by another probability density, maybe one giving more weight
to points closer to « ?
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KDE - Definition and Properties

Definition. KDE of f based on X, ..., X is

where the kernel K (-) satisfies:
Q@ K(z)>0forallz eR

Q@ K(—z)=K(z)forallz € R
Q [ K(z)dz=1

@ sup, |K(z)| < oo

@ K(-) is usually taken to be a density, and the assumptions
e 1-3 hold if it is symmetric
@ 4 holds if it has a finite absolute moment
e 5 holds if it is uniformly bounded
e if h, — 0 and nh,, — oo (as n — 00), we have pointwise consistency
e we will show this in a bit
e also uniform consistency, but tricky to show
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Common Kernels

Kernel Name Formula
Epanechnikov K(z) o< (1 —22)L, 1
Tricube (a.k.a. Triweight) K(z) oc (1= |2[?)° 1)<y
Gaussian K(z) o exp(—x2%/2)
= Uniform
LOF —— Triangle B
—— Epanechnikov
—Ql{anic
ot i
Cosine
0.6 1
0.0 -1
Ilﬂ I ‘ I IIO

- 05 0.0 0s
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Bandwidth > Kernel

@ While there is improvement when using non-rectangular kernels, the
choice of the bandwidth is more important than that of the kernel

@ A good choice is one that makes the estimate asymptotically
converge quite rapidly in some well-chosen norm
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Bias-Variance Trade-off

Goal: choose the tuning parameter h so that the mean squared error of the

estimator is minimized:

E[{/(z) — f()}?] = E[{f(z) £ Ef(x) - f(x)}’]

MSE{f(z)}

= {Ef(2) — f(2)} +var{f(z)}

bias? variance

Blackboard calculations (available in the lecture notes) give

bias{f(z)} = %hif”(:r) / 22K (2)dz + o(h2)

var{f(z)} = nlhnf(m)/{K(z)}de—i—o< ! )

nh,

This shows consistency for h,, — 0 and nh,, — oo and the trade-off:

@ small h = small bias but large variance
@ large h = large bias but small variance
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Bias-Variance Trade-off

The bias-variance trade-off is common when it comes to smoothing:

o In KDE, the smoothing is determined by the bandwidth
@ Smoother estimates result in smaller variance but higher bias

Risk

.- Bias squared

Variance

<.+ Less smoothing Optimal More smoothing ««»

smoothing Source: Wassermann (2006)
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Optimal Bandwidth

Plugging this back in the MSE formula ignoring the little-o terms,
differentiating the MSE w.r.t. h and setting it to zero leads to
asymptotically optimal bandwidth choice:

hopy(z) = n~/° ( f(x;fK(z)de 2) 1/5
[f//(l’)] [fZQK(Z)dz]

0 hyp(x) < n~1/5 (hopt () is of the order n~1/%) and with this choice
MSE = variance = O(n=*/%)
e optimal non-parametric convergence rate

o slower than the MSE of a MLE (@(n~!)): price to pay for
non-parametric approach

® h,, () is a local choice - depends on x. A global choice can be
obtained by minimizing the MISE (to follow)
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Optimal Kernel

The optimal bandwidth results in

2/5

MSE,  =c(n, ) / x2K<z)dz{ / K2(z)dz}2 ,

A

where ¢(n, f) is constant and depends only on n and f.
= The optimal kernel is the one minimizing the term A.

It can easily be shown to be the Epanechnikov kernel!

Linda Mhalla Week 3: Kernel Density Estimation 2024-09-27 19/30



Global Optimal Bandwidth

A common measure of performance of the estimator over all x is the Mean
Integrated Squared Error (MISE):

MISE(f) = [E/{f F(@)}2dz
— [Etf0) ~ f@))dn = [ MSE(f(w))ds

Minimizing the MISE yields the optimal bandwidth

2,2 z 1/
<f{f” }sz”iK dzf)

The resulting MISE is also of order n=%/%
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The Chicken and Egg problem

The theoretically optimal bandwidth hopt =n"Y5(C(k)/ [{f"(x)}2dx)'/®

cannot be directly used as it depends on the unknown f. There are different
approaches for the practical choice of h.

@ Reference method: choose a parametric family for this formula
o assume that f is the density of a NV (u, 0?) and then plug in its

3 . 7 . .
curvature g into the formula of f,,,. This yields

Rope = 30 C (k) V5(8/m/3) /0

which when combined with a normal kernel gives the famous rule of
thumb h,,, = (4/3)Y/5n"1/55

@ Two-step method: f in the formula is estimated non-parametrically by a
pilot fit

opt —

o estimate f” by kernel estimate with pilot bandwidth

o plug this estimate into h,, to estimate the optimal bandwidth in the
kernel estimation of f
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Section 2




Multivariate Density estimator

In practice, data are often multivariate

Consider n i.i.d. realizations of a d-dimensional random vector
X; = (X;1,...,X; 4)" from unknown F. We wish to estimate f, the

density of F

The multivariate kernel density estimator is defined as
- 1 & x — X,
= — E K !

fn<x> nhd Lo ( h ) ;

where the kernel K (-) is a d-dimensional density
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Multivariate Kernel
In practice, K is often chosen as

@ the product of univariate kernels: K(x) = szl Ky(x;)
o ellipsoidal kernel
o multivariate normal density: (27)~%/2 exp(—xx'/2)

= the matrix of bandwidths plays the role of the covariance-variance

matrix
e multivariate Epanechnikov: %(1 - xxT)]l[fl’l] (xx"), with ¢, the
volume of a d-dimensional unit ball (¢; =1, ¢y =7, ¢5 = 47/3)

Degrees of smoothing are controlled by h and can be set different along
the directions, i.e., under a product kernel, the KDE is

- 1< 1 ry— X, 1 g — X4
fn<x> n ;:1 hl 0( hl ) X X hd 0( hd

= if margins are standardized (on the same scale), set h = hy; = ... = hy

Linda Mhalla Week 3: Kernel Density Estimation 2024-09-27 24 /30



Multivariate KDE

@ Mixture of bivariate normal
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Multivariate KDE

o Faithful dataset

o
S
—
Q
@
j=2)
i
=
=
Q
©
o
<

Eruptions
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Curse of dimensionality

@ KD estimation is typically restricted to d = 2
@ Unless sample size is very large, neighbourhoods will be sparsely
populated with data points (in higher dimensions)

For instance,

e If you have n data points uniformly distributed on the interval [0, 1],
how many data points are there in the interval [0,0.1]?

Around n/10

o If you have n data points uniformly distributed on the 10-dimensional
unit cube [0, 1]*°, how many are there in the cube [0,0.1]'0?

Around 0.119,

= estimation gets harder very quickly as dimension increases
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Curse of dimensionality

Under some smoothing conditions on f, the best possible MSE rate (the
one obtained with optimal choice of bandwidth) is O(n~4/(4+4)) That is,
MSEhopt ~ en Y4+ and n &~ ((:/MKS'E,Lm)d/4

= sample size grows exponentially with dimension

n~4/(d+4) d=1 d=2 d=5
n = 100 0.025 0.046 0.129
n = 1000 0.004 0.010 0.046
n = 10000 6.3 x 1074 2.1x1073 1.6 x 102

Thus, for d = 5, the rate with n = 10000 is the same than for d = 2 with
10 times less data ..
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Summary - Overall

Motivation:

© On Week 2, we introduced the histogram as a data exploratory tool
and noticed its limitations
@ Histogram is a poor estimator of density, because it
e is never smooth and requires a choice of origin
© Today, we introduced naive KDE by generalizing histogram to its
origin-free version
@ Then, we generalized naive KDE by allowing for better kernels
© Now we have a decent nonparametric density estimation tool: KDE
e in exploratory analysis, histograms often overlaid with KDEs

Main takeaways:

@ Asymptotic properties analyzed using Taylor expansions
e suggest a way to choose bandwidth
e the bias-variance trade-off made explicit

@ Multivariate extension works well in low dimensions
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Assignment 2 and Exercise

Go to Assignment 2 for details.

Go to Exercise 2 for details.
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https://math-517.github.io/math_517_website/exercises/exercise-02.html
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