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Section 1

Univariate Density Estimation
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The problem
Setup: 𝑋1, … , 𝑋𝑛 is a random sample from a distribution 𝐹 with continuous
density 𝑓(𝑥)
Goal: Estimate 𝑓 non-parametrically, i.e., without assuming a particular form
The histogram

ℎ(𝑥) = 1
𝑛

𝐾
∑
𝑘=1

# {{𝑋𝑗}𝑛
𝑗=1 ∩ ℐ𝑘}

|ℐ𝑘| 𝟙𝑥∈ℐ𝑘

is the simplest form of density estimation. It requires a specification of

origin and binwidth, or
breaks: more general, but non-equidistant binning is bad anyway, so think
only about origin and bindwidth

Running Ex.: Yellowstone’s Old Faithful geyser - faithful data:

waiting - time between eruptions
eruptions - duration of the eruptions
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Basic estimator: Histogram
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(equally spaced) breaks specified, so a rule of thumb used to choose origin and binwidth
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Histogram: Change in Origin and Binwidth

Origin at 1.5
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⇒ density estimate depends on the starting position and width of the bins
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Issues with Histogram
Histogram is great for visualization, but fails as a density estimator

origin is completely arbitrary
binwidth relates to smoothness of f, but histogram cannot be smooth. The
discontinuities of the estimate are not due to the underlying density but to
bins’ locations and widths
curse of dimensionality: number of bins grows exponentially with the
number of dimensions
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Let us now address these issues by a naive version of kernel density estimation
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ECDF

Let 𝐹 denote the empirical (cumulative) distribution function (ECDF) of
the data {𝑋𝑖}𝑛

𝑖=1, i.e.,

𝐹𝑛(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

𝟙[𝑋𝑖≤𝑥]

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

ecdf(X)

x

F
n(

x)

−2 −1 0 1 2

0.
0

0.
4

0.
8

ecdf(X)

x

F
n(

x)

Linda Mhalla Week 3: Kernel Density Estimation 2024-09-27 7 / 30



Naive Density Estimator
The ECDF 𝐹𝑛(𝑥) is an estimator of 𝐹

by Glivenko-Cantelli theorem uniformly almost surely consistent:

sup𝑥|𝐹 (𝑥) − 𝐹(𝑥)| 𝑎.𝑠.→ 0

Note that 𝑓 is the derivative 𝐹 . However, plugging 𝐹𝑛(𝑥) results in a
sum of point masses at the observations as 𝐹𝑛 is discrete
But,

𝑓(𝑥) = lim
ℎ→0+

𝐹(𝑥 + ℎ) − 𝐹(𝑥 − ℎ)
2ℎ

and we can fix ℎ = ℎ𝑛 small and depending on 𝑛, and plug it in:

̂𝑓(𝑥) = ̂𝑓𝑛(𝑥) = 𝐹𝑛(𝑥 + ℎ𝑛) − 𝐹𝑛(𝑥 − ℎ𝑛)
2ℎ𝑛

= 1
2ℎ𝑛

1
𝑛

𝑛
∑
𝑖=1

𝟙[𝑋𝑖∈(𝑥−ℎ𝑛,𝑥+ℎ𝑛]]

⇒ This is called the naive density estimator
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Naive Density Estimator
The naive DE ̂𝑓 is a step function with jumps at the points 𝑋𝑖 ± ℎ,
and thus discontinuous

̂𝑓 is the sum of boxcar functions centered at the observations with
width 2ℎ and area 1/𝑛 ⇒ this is equivalent to the notion of moving
histogram with binwidth=2ℎ

aggregate data in intervals of the form (𝑥 − ℎ, 𝑥 + ℎ) and approximate
the density at 𝑥 by the relative frequency in (𝑥 − ℎ, 𝑥 + ℎ)
origin does not matter anymore
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Consistency
Theorem If ℎ = ℎ𝑛 → 0 and 𝑛ℎ𝑛 → ∞ as 𝑛 → ∞, then, for any continuity
point 𝑡,

̂𝑓𝑛(𝑡)
𝑝

→ 𝑓(𝑡),
as 𝑛 → ∞. Thus, ̂𝑓𝑛 is a (weakly) consistent estimator

For instance, since

̂𝑓(𝑥) = 1
2𝑛ℎ𝑛

𝑛
∑
𝑖=1

𝐵𝑒𝑟(𝐹(𝑥+ℎ𝑛)−𝐹(𝑥−ℎ𝑛))
⏞⏞⏞⏞⏞⏞⏞𝟙[𝑋𝑖∈(𝑥−ℎ𝑛,𝑥+ℎ𝑛]]

𝔼 ̂𝑓(𝑥) = 𝐹(𝑥+ℎ𝑛)−𝐹(𝑥−ℎ𝑛)
2ℎ𝑛

→ 𝑓(𝑥) as ℎ𝑛 → 0+, when 𝑛 → ∞

var{ ̂𝑓(𝑥)} = 1
4𝑛ℎ2𝑛

{𝐹(𝑥 + ℎ𝑛) − 𝐹(𝑥 − ℎ𝑛)}{1 − 𝐹(𝑥 + ℎ𝑛) + 𝐹(𝑥 − ℎ𝑛)}

= 𝐹(𝑥+ℎ𝑛)−𝐹(𝑥−ℎ𝑛)
2ℎ𝑛

1−𝐹(𝑥+ℎ𝑛)+𝐹(𝑥−ℎ𝑛)
2𝑛ℎ𝑛

→ 0
as ℎ𝑛 → 0 and 𝑛ℎ𝑛 → ∞, when 𝑛 → ∞
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Smoothness of the Naive DE
Smoothness of ̂𝑓 depends on the bandwidth ℎ, often called the smoothing
parameter

the bandwidth ℎ is a tuning parameter and needs to be chosen
somehow in practice

ℎ small → wiggly estimator
ℎ large → smooth estimator

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

D
en

si
ty

h=1
h=0.1
h=0.01

Linda Mhalla Week 3: Kernel Density Estimation 2024-09-27 11 / 30



Naive DE Rewritten
The naive DE can be written as

̂𝑓(𝑥) = 1
2𝑛ℎ𝑛

𝑛
∑
𝑖=1

𝟙[𝑋𝑖∈(𝑥−ℎ𝑛,𝑥+ℎ𝑛]] = 1
2𝑛ℎ𝑛

𝑛
∑
𝑖=1

𝟙[−1< 𝑋𝑖−𝑥
ℎ𝑛 ≤1]]

= 1
𝑛

𝑛
∑
𝑖=1

1
ℎ𝑛

𝐾 (𝑥 − 𝑋𝑖
ℎ𝑛

)

where 𝐾(𝑡) = 1
2 𝟙{−1<𝑡≤1} is the density of 𝑈[−1, 1].

Since ∫+∞
−∞ 𝐾(𝑡)𝑑𝑡 = 1, we have that

∫
+∞

−∞
̂𝑓(𝑥)𝑑𝑥 = 1

𝑛
𝑛

∑
𝑖=1

1
ℎ𝑛

∫
+∞

−∞
𝐾 (𝑥 − 𝑋𝑖

ℎ𝑛
) 𝑑𝑥 = 1

Since 𝐾(𝑥) ≥ 0, then ̂𝑓(𝑥) ≥ 0 for all 𝑥.

⇒ ̂𝑓(𝑥) is a probability density function

Next step: replace 𝐾(𝑥) by another probability density, maybe one giving more weight
to points closer to 𝑥 ?
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KDE - Definition and Properties
Definition. KDE of 𝑓 based on 𝑋1, … , 𝑋𝑁 is

̂𝑓(𝑥) = 1
𝑛ℎ𝑛

𝑛
∑
𝑖=1

𝐾 (𝑋𝑖 − 𝑥
ℎ𝑛

) ,

where the kernel 𝐾(⋅) satisfies:

1 𝐾(𝑥) ≥ 0 for all 𝑥 ∈ ℝ
2 𝐾(−𝑥) = 𝐾(𝑥) for all 𝑥 ∈ ℝ
3 ∫ℝ 𝐾(𝑥)𝑑𝑥 = 1

4 lim|𝑥|→∞ |𝑥|𝐾(𝑥) = 0
5 sup𝑥 |𝐾(𝑥)| < ∞

𝐾(⋅) is usually taken to be a density, and the assumptions
1-3 hold if it is symmetric
4 holds if it has a finite absolute moment
5 holds if it is uniformly bounded

if ℎ𝑛 → 0 and 𝑛ℎ𝑛 → ∞ (as 𝑛 → ∞), we have pointwise consistency
we will show this in a bit
also uniform consistency, but tricky to show
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Common Kernels
Kernel Name Formula

Epanechnikov 𝐾(𝑥) ∝ (1 − 𝑥2)𝟙[|𝑥|≤1]
Tricube (a.k.a. Triweight) 𝐾(𝑥) ∝ (1 − |𝑥|3)3𝟙[|𝑥|≤1]
Gaussian 𝐾(𝑥) ∝ exp(−𝑥2/2)
… …

Figure 1: Kernels
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Bandwidth > Kernel

While there is improvement when using non-rectangular kernels, the
choice of the bandwidth is more important than that of the kernel
A good choice is one that makes the estimate asymptotically
converge quite rapidly in some well-chosen norm
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Bias-Variance Trade-off
Goal: choose the tuning parameter ℎ so that the mean squared error of the
estimator is minimized:

𝔼[{ ̂𝑓(𝑥) − 𝑓(𝑥)}2]⏟⏟⏟⏟⏟⏟⏟
𝑀𝑆𝐸{ ̂𝑓(𝑥)}

= 𝔼[{ ̂𝑓(𝑥) ± 𝔼 ̂𝑓(𝑥) − 𝑓(𝑥)}2]

= {𝔼 ̂𝑓(𝑥) − 𝑓(𝑥)}2
⏟⏟⏟⏟⏟⏟⏟

𝑏𝑖𝑎𝑠2

+ var{ ̂𝑓(𝑥)}⏟⏟⏟⏟⏟
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

Blackboard calculations (available in the lecture notes) give

bias{ ̂𝑓(𝑥)} = 1
2ℎ2

𝑛𝑓″(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧 + 𝑜(ℎ2
𝑛)

var{ ̂𝑓(𝑥)} = 1
𝑛ℎ𝑛

𝑓(𝑥) ∫ {𝐾(𝑧)}2𝑑𝑧 + 𝑜 ( 1
𝑛ℎ𝑛

)

This shows consistency for ℎ𝑛 → 0 and 𝑛ℎ𝑛 → ∞ and the trade-off:

small ℎ ⇒ small bias but large variance
large ℎ ⇒ large bias but small variance

Remark: The estimator is not consistent near the boundaries of the dataLinda Mhalla Week 3: Kernel Density Estimation 2024-09-27 16 / 30



Bias-Variance Trade-off

The bias-variance trade-off is common when it comes to smoothing:

In KDE, the smoothing is determined by the bandwidth
Smoother estimates result in smaller variance but higher bias

Source: Wassermann (2006)
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Optimal Bandwidth

Plugging this back in the MSE formula ignoring the little-o terms,
differentiating the MSE w.r.t. ℎ and setting it to zero leads to
asymptotically optimal bandwidth choice:

ℎ𝑜𝑝𝑡(𝑥) = 𝑛−1/5 ( 𝑓(𝑥) ∫ 𝐾(𝑧)2𝑑𝑧
[𝑓″(𝑥)]2[ ∫ 𝑧2𝐾(𝑧)𝑑𝑧]2 )

1/5

ℎ𝑜𝑝𝑡(𝑥) ≍ 𝑛−1/5 (ℎ𝑜𝑝𝑡(𝑥) is of the order 𝑛−1/5) and with this choice
𝑀𝑆𝐸 ≍ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝒪(𝑛−4/5)

optimal non-parametric convergence rate
slower than the MSE of a MLE (𝒪(𝑛−1)): price to pay for
non-parametric approach

ℎ𝑜𝑝𝑡(𝑥) is a local choice - depends on 𝑥. A global choice can be
obtained by minimizing the MISE (to follow)
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Optimal Kernel

The optimal bandwidth results in

𝑀𝑆𝐸ℎ𝑜𝑝𝑡
= 𝑐(𝑛, 𝑓)

⎡
⎢⎢
⎣

∫ 𝑥2𝐾(𝑧)𝑑𝑧{ ∫ 𝐾2(𝑧)𝑑𝑧}
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴

⎤
⎥⎥
⎦

2/5

,

where 𝑐(𝑛, 𝑓) is constant and depends only on 𝑛 and 𝑓 .
⇒ The optimal kernel is the one minimizing the term 𝐴.
It can easily be shown to be the Epanechnikov kernel!
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Global Optimal Bandwidth

A common measure of performance of the estimator over all 𝑥 is the Mean
Integrated Squared Error (MISE):

𝑀𝐼𝑆𝐸( ̂𝑓) = 𝔼 ∫{ ̂𝑓(𝑥) − 𝑓(𝑥)}2𝑑𝑥

= ∫ 𝔼{ ̂𝑓(𝑥) − 𝑓(𝑥)}2𝑑𝑥 = ∫ 𝑀𝑆𝐸{ ̂𝑓(𝑥)}𝑑𝑥

Minimizing the MISE yields the optimal bandwidth

ℎ̃𝑜𝑝𝑡 = 𝑛−1/5( ∫ 𝐾2(𝑧)𝑑𝑧
∫{𝑓″(𝑥)}2𝑑𝑥[ ∫ 𝑧2𝐾(𝑧)𝑑𝑧]2 )

1/5

The resulting MISE is also of order 𝑛−4/5
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The Chicken and Egg problem
The theoretically optimal bandwidth ℎ̃𝑜𝑝𝑡 = 𝑛−1/5(𝐶(𝑘)/ ∫{𝑓″(𝑥)}2𝑑𝑥)1/5

cannot be directly used as it depends on the unknown 𝑓 . There are different
approaches for the practical choice of ℎ.

Reference method: choose a parametric family for this formula
assume that 𝑓 is the density of a 𝒩(𝜇, 𝜎2) and then plug in its
curvature 3

8√𝜋𝜎5 into the formula of ℎ̃𝑜𝑝𝑡. This yields

ℎ̃𝑜𝑝𝑡 = 𝑛−1/5𝜎𝐶(𝑘)1/5(8√𝜋/3)1/5

which when combined with a normal kernel gives the famous rule of
thumb ℎ̂𝑜𝑝𝑡 = (4/3)1/5𝑛−1/5𝜎̂

Two-step method: 𝑓 in the formula is estimated non-parametrically by a
pilot fit

estimate 𝑓″ by kernel estimate with pilot bandwidth
plug this estimate into ℎ̃𝑜𝑝𝑡 to estimate the optimal bandwidth in the
kernel estimation of 𝑓
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Section 2

Multivariate Density Estimation

Linda Mhalla Week 3: Kernel Density Estimation 2024-09-27 22 / 30



Multivariate Density estimator

In practice, data are often multivariate
Consider 𝑛 i.i.d. realizations of a 𝑑-dimensional random vector
X𝑖 = (𝑋𝑖,1, … , 𝑋𝑖,𝑑)⊤ from unknown 𝐹 . We wish to estimate 𝑓 , the
density of 𝐹
The multivariate kernel density estimator is defined as

̂𝑓𝑛(x) = 1
𝑛ℎ𝑑

𝑛
∑
𝑖=1

𝐾(x − X𝑖
ℎ ),

where the kernel 𝐾(⋅) is a 𝑑-dimensional density
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Multivariate Kernel
In practice, 𝐾 is often chosen as

the product of univariate kernels: 𝐾(x) = ∏𝑑
𝑖=1 𝐾0(𝑥𝑖)

ellipsoidal kernel
multivariate normal density: (2𝜋)−𝑑/2 exp(−xx⊤/2)

⇒ the matrix of bandwidths plays the role of the covariance-variance
matrix

multivariate Epanechnikov: 𝑑+2
2𝑐𝑑

(1 − xx⊤)𝟙[−1,1](xx⊤), with 𝑐𝑑 the
volume of a 𝑑-dimensional unit ball (𝑐1 = 1, 𝑐2 = 𝜋, 𝑐3 = 4𝜋/3)

Degrees of smoothing are controlled by ℎ and can be set different along
the directions, i.e., under a product kernel, the KDE is

̂𝑓𝑛(x) = 1
𝑛

𝑛
∑
𝑖=1

1
ℎ1

𝐾0(𝑥1 − 𝑋𝑖,1
ℎ1

) × ⋯ × 1
ℎ𝑑

𝐾0(𝑥𝑑 − 𝑋𝑖,𝑑
ℎ𝑑

)

⇒ if margins are standardized (on the same scale), set ℎ = ℎ1 = … = ℎ𝑑
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Multivariate KDE

Mixture of bivariate normal
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Multivariate KDE

Faithful dataset
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Curse of dimensionality

KD estimation is typically restricted to 𝑑 = 2
Unless sample size is very large, neighbourhoods will be sparsely
populated with data points (in higher dimensions)

For instance,

If you have 𝑛 data points uniformly distributed on the interval [0, 1],
how many data points are there in the interval [0, 0.1]?

Around 𝑛/10
If you have 𝑛 data points uniformly distributed on the 10-dimensional
unit cube [0, 1]10, how many are there in the cube [0, 0.1]10?

Around 0.110𝑛
⇒ estimation gets harder very quickly as dimension increases
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Curse of dimensionality

Under some smoothing conditions on 𝑓 , the best possible MSE rate (the
one obtained with optimal choice of bandwidth) is 𝑂(𝑛−4/(𝑑+4)). That is,
𝑀𝑆𝐸ℎ𝑜𝑝𝑡

≈ 𝑐𝑛−4/(𝑑+4) and 𝑛 ≈ (𝑐/𝑀𝑆𝐸ℎ𝑜𝑝𝑡
)𝑑/4

⇒ sample size grows exponentially with dimension

𝑛−4/(𝑑+4) 𝑑 = 1 𝑑 = 2 𝑑 = 5
𝑛 = 100 0.025 0.046 0.129
𝑛 = 1000 0.004 0.010 0.046
𝑛 = 10000 6.3 × 10−4 2.1 × 10−3 1.6 × 10−2

Thus, for 𝑑 = 5, the rate with 𝑛 = 10000 is the same than for 𝑑 = 2 with
10 times less data …
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Summary - Overall
Motivation:

1 On Week 2, we introduced the histogram as a data exploratory tool
and noticed its limitations

2 Histogram is a poor estimator of density, because it
is never smooth and requires a choice of origin

3 Today, we introduced naive KDE by generalizing histogram to its
origin-free version

4 Then, we generalized naive KDE by allowing for better kernels
5 Now we have a decent nonparametric density estimation tool: KDE

in exploratory analysis, histograms often overlaid with KDEs

Main takeaways:
7 Asymptotic properties analyzed using Taylor expansions

suggest a way to choose bandwidth
the bias-variance trade-off made explicit

8 Multivariate extension works well in low dimensions
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Assignment 2 and Exercise

Go to Assignment 2 for details.
Go to Exercise 2 for details.
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